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ABSTRACT

A series of variably proportioned iron/calcium smectite clays and iron

loaded smectite clays containing iron up to the level found in the martian

soil have been prepare from a typical montomorillonite clay using the Banin

method (Banin, 1973). Evidence has been obtained which supports the premise

that these materials provide a unique and appropriate model soil system for

the martian surface in that they are consistent with the constraints

imposed by the Viking surface elemental analyses, the reflectance data

obtained by various spacecraft instruments and ground-based telescopes,

and the chemical reactivity measured by one of the Viking 'biology' experi-

ments, the Labeled Release (LR) experiment.



RESULTS AND DISCUSSION

A. PREPARATION OF MARS SOIL ANALOG MATERIALS (MarSAM)

The preparation of several sets of MarSAM by the Banin (1973) ion-exchange

process has been done. These sets were:

1985 - A suite of five variably ion-exchanged iron/calcium SWy-1

montmorillonite clays with 0, 20, 50, 80 and 100% adsorbed iron, and

an Otay montmorillonite clay with 100% adsorbed iron. This suite

was used to establish spectral and chemical analogy of iron-

exchanged clays to the martian soil and to develop the protocols for

reflectance and quantitative NIR analysis of MarSAM samples.

1986 - A suite of eight SWy-1 montmorillonite clays containing adsorbed/

precipitated iron to 250% of the cation exchange capacity (CEC) (total

content of Fe203 of up to 9-10% by weight of the clay). This suite

serves as a better elemental analog to Mars soil with respect to iron

content, and was characterized with respect to its total elemental

composition and surface-ion composition.

1987 - Large quantities of four modified SWy-1 montmorillonite clays,

containing 0, 50 and 100% of CEC as adsorbed iron (with calcium as

the complementary ion), and 100% adsorbed H+(AI), for the study of

radiation and environmental effects on the spectral properties of

Fe/Ca MarSAM (See L. M. Coyne report).

1988 - A series of modified SWy-1 montmorillonite clays containing up to

~19% Fe203 (about 600% of CEC). These clays served to elucidate

the role of amorphous iron, either chemically adsorbed or co-

precipitated on the clay surface, in concentrations similar to those

found in Mars soil, on the chemical and spectral properties of the

MarSAM.



B. CHARACTERIZATION OF MarSAM

1. Elemental Analysis

The elemental composition (as oxides of major (Si, AI, Ti, Fe, Mn, Mg, Ca, Na, K

and P) and trace (Rb, Y, Sr, Cs, Br, Zr and Zn) elements) of the 1985 MarSAM were

determined. The major elements were determined quantitatively using a wavelength

dispersive X-ray fluorescence (XRF) spectrometer, while the trace elements were

analyzed in a semiquantitative fashion with an energy dispersive XRF instrument.

Because of the limited amounts of samples available, a micro-technique was adopted

for the analysis of the major elements. Inductively coupled plasma (ICP) was used to

check the results of the XRF procedures for the following elements: Si, AI, Fe, Mg, Ca,

Ti and Mn. The results of the elemental analyses showed that the ion-exchange

procedure used for preparing the modified clays removes most of the Na, Ca, and P,

and some of the K and Mg. This is expected as these elements are present as

adsorbed ions, in soluble salts or in minor accessory minerals. The major matrix

elements Si and AI remained essentially unchanged. A more detailed discussion of

the results is given in a published paper. (Banin et al., 1988, Appendix A). A complete

elemental match between MarSAM-1985 samples and Mars soil, as understood from

existing data, was not attempted at the present time as thisMarSAM suite was

synthesized to study the chemistry and spectroscopy of adsorbed iron in the clay

matrix and to establish the chemical analogy of iron-exchanged clays to Martian soil.

An important conclusion that follows from the elemental analysis of the major elements

of the MarSAM-1985 is that the Banin ion-exchange procedure used to prepare the

clays does not affect the crystal lattice to a discernible extent, as evidenced by the

constancy of results for the major elements silicon, aluminum, titanium and

manganese.

2. Surface Ion Composition and Physico-Chemical Characteristics

Detailed characterization of the su_ce-ion composition, redox potentials and

particle size distributions I_y SEM measurements were done for the 1985 and 1986

series of MarSAM. The data for the 1985 suite are discussed in detail in Banin, et al.

(1988). Generally, the clay modification procedure that was used (Banin, 1973) has

repeatedly produced clays of controlled composition, and has given reproducible,

stable and self:consistent results in the many tests to which they were exposed over
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the last few years, including the LR simulation, light reflectance in the UV-VIS-NIR

wavelength range, thermoluminescence and ESR (Banin and Rishpon,1979; Banin et

ai., 1985; Coyne and Banin ,1986; Banin et al., 1988).

The smectite structure was essentially not damaged or changed by the
procedure in which the clay was loaded with adsorbed iron up to ~14% Fe203,

bringing it (together with the structural iron) to a total iron content of 17-19% Fe203, as

found in the Mars soil. This is shown by the recently obtained X-ray diffraction spectra

of the crude and treated clays (Figure 1). Note that the montmorillonite peaks are

dominant in both the crude and treated clays and that no diffraction peaks for
crystallized iron minerals appear, except at the highest level of iron addition.

The X-ray diffraction spectra of the iron-clays supply direct evidence of the non-

crystallinity of the iron oxides, by showing only a few weak peaks characteristic of
crystalline iron oxides, that may be tentatively assigned to goethite ((z-FeOOH),

appearing in the clay-iron oxide preparation with the highest level of added iron

(Figure 1).

The reflectance spectra of the Fe loaded clays in the UV-VIS-NIR range

maintain the similarity to the Mars bright-region spectra (Banin et al., 1985; Banin et

a1.,1988,Appendix A) in that, even at high iron loads, the typical d-d iron absorption
bands in the 0.4-0.9 I_mwavelength range are not distinguishable. Comparison of

these spectra with those reported for physical mixtures of clays with well crystallized

iron oxides (Singer, 1982), shows that at comparable iron-oxide contents, clear and

well recognized absorption features can be seen in the physical mixtures. This

indicates that crystallization of iron adsorbed/precipitated on the clay by our procedure

was inhibited. These findings reinforce our hypothesis that amorphous iron oxides in

a clay system, modified by our procedure, may be an appropriate analog for the

silicate phases and the iron phases in the martian soil.

3. Micromorphological description of the precipitated iron-phases

Transmission electron microscopy (Photo 1, Ben-Shlomo and
Banin,unpublished data) showed no discrete' particles of iron oxides forming until

added iron reached 3-4% Fe203 but the clay particles became more electron-dense

indicating fine coating withthe a.dded iron. Small, electron-dense discrete

isodiametrical particles appeared at added iron contents above 8-9% Fe203.

Needle-shaped particles were observed in the preparation with the highest iron

content. However, the iron oxide-oxyhydroxy particles were in a size range smaller
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X-ray diffractograms of MarSAM with different nominal Ioadings of iron-
oxyhydroxide. They were obtained for non-oriented powders on (from top
to bottom): the crude clay (SWy-1), the modified, acid-leached clay with
no adsorbed iron (0), and clays with 2.57%, 6.43% and 14.2% added
Fe203. The labeled peaks are: M=montmorillonite, Q=quartz, and

G=goethite(?).
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than reported in the literature for hematite and goethite (3-5 nm vs. 100-500 nm and

70-100 vs. 200-800 nm, for the isodiametrical and needle-shaped particles,

respectively).

It appears that the presence of soluble AI and Si released from the clay and

perhaps the large specific surface area of the smectite, played a major role in the

inhibition or retardation of crystal growth of the iron phases. Even at iron oxide

concentration of up to 15% Fe203, the smectite clay acted as a "retarding matrix"

preventing through chemical effects and/or steric hindrances, the crystal-growth of iron

oxyhydroxide deposited onto it. Such effects may explain the apparently limited

crystal growth of iron-oxides in the martian soil.

4. Water adsorption isotherms

Water adsorption by clays with variable amounts of adsorbed iron/calcium,

specifically 0, 50 and 100% adsorbed Fe, depicted a complex dependence on the

exchangeable ion composition and on the relative humidity. The water adsorption

isotherm for the Ca-clay was similar to those reported before in the literature. As for

the Fe-clay, to the best of our knowledge, no detailed adsorption study has been

reported yet for such a clay. A detailed discussion of the findings is presented in Banin

et al. (1988) (Appendix A). The general shape of the adsorption isotherms and the

differences between the various ionic forms could be explained on the basis of a

model describing water interaction with clay surfaces (Sposito and Prost, 1982). A

sequence of stable molecular configurations for water has been proposed to describe

the adsorption process. On the basis of this we predicted that the adsorption isotherms

and, thus, those catalytic and spectral properties of the clay associated with moisture

content will be most sensitive to the ionic composition at moisture contents between 4

and 8 H20 molecules per unit cell (10-20% adsorbed moisture) at which level the

solvation envelopes around the cations are being formed.

Since the surface-chemical reactivity of clays is strongly affected and modulated

by the state and amount of adsorbed water, it is expected that Martian soil reactivity (if

smectite clays are major components) will be (a) modulated by the amount of

adsorbed water, (b) more strongly fluctuating at certain moisture contents than at

others depending on the stability of the water molecular configuration, and (c)

temporally and spatially variable in relation to soil composition as well as to

atmospheric variations at the planet's surface.

4



C. REFLECTANCE SPECTROSCOPY

SWy-I montmorillonite, a smectite clay, from Crook County, Wyoming was

used as the starting material for the preparation of a Mars soil analog.

This parent clay was obtained from the Clay Mineral Society Respository at

the University of Missouri, Columbia, Missouri, and was in powder form.

Using the "Quantitative Ion Exchange Method" of Banin (Banin 1973; Banin et

al., 1988), the crude clay was converted to a form containing 15.8 + 0.4 wt

% Fe as Fe_O 3 as determined by wavelength dispersive X-Ray fluorescence

(XRF). This is equivalent to approximately 600% of the iron necessary to

fill all of the cation exchange sites available in the clay. The fraction of

iron beyond 100% of the exchange capacity is thought to be adsorbed onto

the surface of the clay as oxyhydroxy iron colloids at the nanocrystalline

level (Banin, 1989). The palagonite is a sample of basaltic glass collected

at several locations on the upper slopes of Mauna Kea on the island of

Hawaii. This palagonite contained II.I + 0.5 wt % Fe as Fe=Os. XRF elemental

analyses of palagonite, the clay samples, and the Mars surface from Viking

are shown in Table I. For XRF analysis, fused glass disks were prepared

using 800 mg of sample mixed with 8.000 g of lithium tetraborate flux using

the Wahlberg-Taggart method (Taggart et al., 1987). The XRF analysis was

carried out using an ARL model XRD-8600B wavelength dispersive spectrome-

ter.

Mixtures of palagonite and iron montmorillonite were prepared on a wt %

basis. The pure materials and the mixtures were ground and mixed for one

minute on a Wig-L-Bug before their spectra were measured. An estimate of

the particle size of the palagonite and iron montmorillonite was done using

a light miroscope. In both samples, the vast majority of aggregate particles
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Table I. Average elemental composition of Mars surface fines, palagon-

ire and iron-rlch montmorillonite clay _rom XRF.

............. % by wt ...................

elemental oxide Mars I Montmorillonite 2 Palagonite 2

SiO= 43 53.0 38.8

AI20 s 7 16.8 19.0

Fe20 s 17.6 15.8 14.8

MgO 6 2 .I 4.60

CaO 6 .38 5.36

TiO 2 0.65 0.11 3.30

C1 0.7 ....

SO s 7 ....

MnO -- <.02 0.25

K20 -- 0.31 0.58

Na=O -- 0.30 2.60

P20s -- <.02 0.85

LOI -- 12.90 ii.60

(I) Banin, Clark, and Wanke, 1989; (2) USGS, Menlo Park;
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were estimated to be in the 1-5 #m size range, with a minority portion of

each having some sub-micron particles as well as some particles in the

25-50 _m range. Since particle size distribution was estimated to be about

the same using light microscopy, this parameter is not expected to be a var-

iable of concern in the recorded spectra of the mixtures. Samples of

approximately 1.2 g were pressed into stainless steel planchettes sample

holders 25.4 mm in diameter and 2.5 mm deep using an ECC (English China

Clays, Ltd., London) press. This press provided a pressure of 1.2 kg cm "= on

the sample, resulting in a compact, but softly packed pellet. A 20 second

pressing time was used for all of the samples. This method of pressing is a

standard method of sample preparation employed for reflectance measure-

ments of clay samples (English China Clays, Intl., Test Method PII0). Using

a standardized pressing technique obviated the need to account for particle

packing as a variable in reflectance spectra for this study which was

designed to investigate the effects of mixture composition and surface

substitution. Mars may not be expected to be compacted to the same level.

The samples were stored in a desiccator before mixing, after mixing, and

until their spectra were recorded. All had the same amount of exposure to

ambient air. No further efforts were attempted in these experiments to con-

trol the relative humidity, and thus, the amount of adsorbed water.

Reflectance spectra from 0.3 to 2.5 _m were recorded on a Perkin Elmer

Lambda 9 spectrophotometer (Norwalk, CT) using a Labsphere DRTA-gA Diffuse

Reflectance and Transmittance Accessory (North Sutton, NH). Reflectance

data presented below thus represent hemispherical reflectance. The spec-

tral bandpass was set between 1/5 and i/I0 of the widths at half height of

the spectral features of interest by setting the slits to 2.0 nm in the

UV/VIS. This allowed for a constant spectral resolution (±10%) in the
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UV/VIS. In the NIR , an automatic slit program was used to maintain a con-

stant energy level during spectral scanning (120 nm/min). Halon was used as

reference material in both beams of the spectrophotometer for instrument

background correction and as the standard reflectance material in the

reference beam during sample recording. In order to prevent the lightly

packed sample from falling into the reflectance sphere from its vertical

sample position, a fused quartz plate (Precision Cells Inc., Hisksville, NY)

contained in a custom fabricated sample holder was used in the sample beam

only. The fused quartz plate was also placed in front of the halon during

background correction. All spectra were digitized using Perkin Elmer CUV-3

software installed on a Perkin Elmer model 7700 data station. CUV-3

software operates the lambda 9 spectrophotometer, and collects and

processes the spectral data. The Savitzky/Golay smoothing function, which

determines the best fit of a quadratic polynomial through successive data

windows, was used to smooth the spectra. Twenty five point data windows

were used in the smoothing.

Figure 2 shows a composite reflectance spectrum of typical high albedo

regions of Mars taken from telescopic observations from Earth (Singer et

al., 1979). The ordinate is relative reflectance scaled to a value of 1.0 at

1.02 _m. From the UV to 0.75 _m, the spectrum is almost featureless except

for an increase in reflectance and subtle slope changes at 0.5 and 0.6 #m. A

shallow absorption band is seen with its central position at 0.87 #m. These

features have all been attributed to Fe s+ (Singer, 1982; Sherman, et

ai.,1982), either as Fe3+-O 2" charge transfer absorptions or Fe 3+ crystal

field transitions. Weak, narrow bands at 1.45 and 1.62 #m and a stronger

composite band in the 1.9 to 2.1 _m region seen in the martian spectrum are

attributed to CO 2 in the martian atmosphere. A broad, shallow band observed

-7-
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Fig. 2 Diffuse reflectance spectra of palagonlte and Na-montmorillonite and

representative composite reflectance spectrum for Martlan bright regions.

All spectra are scaled to unity at 1.02 _m. The bright region of the Martian

spectrum is an average of the brlgh_est areas observed in 1973 (HcCord et

al., 1977>, while the near-lnfrared is an average of the brightest areas

observed in 1978 (McCord et al., 1982).
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in the region between 1.4 and 1.7 _m which is superimposed on the sharper

CO 2 band has been interpreted as being due to water ice in or on the surface

of Mars (McCord et al., 1982). Beyond 2.1 #m, the martian spectrum is rela-

tively flat with some hint of fine structure around 2.3-2.4 _m. Recently

obtained higher spectral resolution data from the 1988 opposition in the 2.0

- 2.5 _m region have resolved the absorption envelope of the 2.36 _m band

into 5 distinct and relatively sharp bands. These have been interpreted by

Clark et al. (1990) as being due to the mineral scapolite, but an alterna-

tive interpretation suggests that atmospheric CO as well as a solid phase

contribute significantly to this 2.36 _m band envelope (Roush and Pollack,

1989; Roush, Blaney and Singer, 1990).

i

A comparison of the scaled reflectance spectra of palagonite and Na-

montmorillonite, the natural cation form of Wyoming bentonite, to the mar-

tian spectrum (Singer et al., 1979) region is also shown in Figure 2. Mont-

morillonite with its natural terrestrial cation was chosen for this compar-

ison to facilitate showing which spectral features can be assigned to the
w

clay structure itself and differentiated from those features attributable

to exchanged and adsorbed iron. To facilitate comparison to the telescopic

data which was scaled to a reflectance of 1.0 at 1.02 _m, the spectra of the

two minerals was scaled similarly. In the region from 0.30 - .70 _m, the

spectra are without marked features; all spectra show a drop-off into the
4-- --

ultraviolet. The clay spectrum has a unique slope change occurring around

0.35 _m attributable to Fe-O 2" and other charge transfer bands or crystal

.4

"-field absorptions 6_ iron (Kari_khoff and Bailey, 1973; Chen et al., 1979;

Banin et al., 1985). At about 0.5 _m, a slope change is noticeable in all

three spectra. A band at .62 _m in the clay spectrum is not observed in the

other spectra. The Mars spectrum exhibits a moderately intense band at .87

-8-



_m which is weak in the spectrum of palagonite and very weak in the clay

spectrum. This band has been assigned to Fe z+ by Huguenln et al. (1977).

From 1.3 - 2.5 _m (Fig.2), there are some marked differences between the

analog mineral spectra and the Mars spectrum. Two relatively intense

absorption bands at 1.4 and 1.9 #m are observed in both palagonite and Na-

montmorillonite; in palagonlte, these bands are both broader and weaker

than in the clay, especially at 1.4 _m. The band at 1.4 #m has been sug-

gested as being due to both adsorbed water and structural hydroxyls (OH

stretch overtones); the band at 1.9 _m has been attributed solely to

adsorbed water (H-O-H bend overtones) (Hunt and Salisbury, 1970; Hunt 1977).

As can be seen from the martian spectrum, CO 2 in the martian atmosphere

causes some interference with the 1.4 and 1.9 #m bands. An intense band at

2.2 _m in the spectrum of Na-montmorillonlte and a small, but noticeable

inflection in the spectrum of palagonite at the same wavelength (since pal-

agonite by definition is a mixture of minerals, "contamination" of the pala-

gonite with clay or other minerals is likely) are attributable to clay lat-

tice hydroxyls from combinations of the O-H stretch and cation (AI) O-H bend

or lattice modes (Hunt, 1977; Hunt and Salisbury, 1970). In dioctahedral

clays like montomorillonite, the cation is generally AI s+. This 2.2 #m band

is diagnostic of mineralogy and is interpreted as being indicative Of alumi-

nous hydroxylated minerals such as montmorillonite or kaolinite. As previ-

ously suggested (Singer, 1985: Roush et al., 1990), the absence of the 2.2 #m

band in the spectrum of Mars indicates that well crystalline, aluminous

hydroxylated materials such as dioctahedral montmorillonite cannot be pre-

sent on the surface of Mars as a major mineral. It does not exclude montmo-

rillonite from being present as a minor and, perhaps significant mineral on

the surface.

-9-



A final point of comparison in Figure 2 occurs in the spectral region from

2.2 to 2.5 _m. The clay spectrum shows a drop-off in reflectivity which is

less obvious in the palagonite spectrum and not observed in the Mars spec-

trum. Since the drop-off has been attributed as arising from the 3 _m fun-

damentals of water, this has been interpreted to indicate that the Mars

soil is more desiccated than either the montmorillonite or palagonite ana-

logs (Bruckenthal, 1987; Roush,Blaney,and Singer, 1989)

A similar comparison to that of Figure 2 is shown in Figure 3 except that

an iron rich (15.8 +.4 wt % Fe as Fe2Os) Mars analog montmorillonite has

been substituted for Na-montmorillonite. The spectral analysis is similar

to that of Figure i. In the 0.30 to 0.70 _m region, Fe-montmorillonite shows

qualitatively a closer correspondence to the steep increase in slope of

reflectance associated with the Mars spectrum than does palagonite. This

agrees with the high spectral resolution data recently presented by Bell et

al. (1989) where the investigators concluded that the bands and slope of the

Mars spectrum in this wavelength region are indicative of crystalline iron

oxide minerals which are suggested to be present in the martian surface

soil. As mentioned above, Banin (1989) has proposed that iron-rich clays

containing iron above the cation exchange capacity contain the excess iron

as adsorbed nanocyrstalline iron oxide. This would explain the closer cor-

respondence of the Fe-clay spectrum to that of Mars in the 0.30-0.70 #m

spectral region compared to the spectrum of Na-clay. The prominent 2.2 #m

band is still quite obvious in the spectrum of this iron-enrlched montmoril-

lonite clay which is inconsistent with the Mars spectrum. The maintenance

of the shape and depth of the 2.2 _m band in the iron-rich clay implies that

the clay lattice structure is probably unaffected by the iron substitution

process.
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At the writing of this report, it was concluded by visual evaluation that

in mixtures of palagonite and montmorillonlte clay, up to 30% by weight of

clay (70% by weight palagonlte) can exist without being detected spectros-

copically (Fig.3). It must be expected that the mineralogy of Mars will be

complex. The Mars lithosphere, like Earth's, has been and still is interact-

ing with the atmosphere, and this is likely to produce secondary minerals as

weathering or alteration products as a mixture of minerals composing the

soil.
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D. SIMULATION OF THE VIKING LABELED RELEASE EXPERIMENTS

WITH MarSAM

Experiments were conducted with three clays (0, 50 and 100% Fe) each at two

water contents. The results are reproduced in Figure 4. They show again the

appropriateness of using clays, saturated with iron, as MarSAM. These clays

successfully simulate the chemical-catalytic processes observed during the Viking

mission when a solution of several simple organic compounds was added to the

Martian soil and the decomposition of one of those compounds (believed to be the

formate) was observed Furthermore, the present results showed that adsorbed water

on the clay surface reduced the decomposition activity in the LR reaction so that it

agreed less favorably with the results obtained on Mars. This narrows further the

range that may be predicted for water contents in the Martian soil. A detailed

discussion of these data is given in Banin et al (1988), (Appendix A).

Palogonite, an alteration product of basaltic glass, has been proposed on the

basis of spectral conformity to Mars reflectance in the visible range, as a sole and

completely satisfactory Mars soil analog. We have used the LR simulation method to

test whether palagonites satisfy another constrain for the mineral nature of the Mars

soil, i.e.,_ its demonstrated chemical reactivity and its ability to decompose certain

organic compounds.

Palagonites rel_resenting a wide range of formation conditions on Earth failed to

show such reactivity whereas iron clay does (Figure 5). The pH of these palagonites

in water slurries was found to be in the range of 7.0-9.0, possibly due to buffering by

Ca or Mg carbonates and/or silicic acid released from the patagonite or from the basalt

glass. Even extensive acid leaching of the palagonites did not result in increased

reactivity in the LR simulation experiments. The few palagonites showing some

reactivity (much lower than that measured on Mars) had higher specific surface areas

and were more extensively weathered, possibly containing higher proportions of

weathered smectite minerals. Basaltic glass weathering on Mars, advancing along a

somewhat unique pathway, different from palagonitizatio5 on Earth, may-have resulted

in a mot'e highly crystalized s mectite-phylosilicates while maintaining the iron oxide-

oxyl_ydroxides as amorphous coatings or as nano-phases.

.. The simulation results show that palagonites do not fully comply with the

chemical-reactivity criteria and constraints for Mars soil mineralogy. Further study is

required to resolve the apparently conflicting results of the spectral observations and

the chemical simulations, regarding the mineralogy of the Mars soil.
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SUMMARY

Among the numerous candidates proposed since 1976 as Mars soil analogs,

smectite montmorillonite clays containing adsorbed iron appear to satisfy the largest

number of qualitative constraints known at present. The presence of clays on Mars

may strongly affect its climatological cycles, land forming and shaping processes, and

volatile cycles. Furthermore, establishing the presence of clays as a major and active

component of the Martian soil and dust will be a clue to an evolutionary step on Mars

when liquid water was present. Potentially the presence of significant amounts of

water may have made possible primitive abiotic or biotic evolution, whose organic

remnants may still be found in buried sediments. To these ends, we have carried out a

number of experiments studying various properties of a suite of iron-calcium and iron

enriched montmorillonite clays as a model for the Martian soil. In summary, we have:

• Prepared a monomineralic model for Mars aeolian material in which:

a) the parent material is a natural montmorillonite clay and

b) several properties, including surface iron and precipitated iron

can be systematically varied.

.

o

Measured the reflectance spectra of the above clays from 2-25 p.m and

found:

a) two absorption features at (.5-.6 and .95 p.m) whose intensity

increases with increasing surface iron,

b) satisfying qualitative agreement between the spectra of our

clays and of Mars (in the VIS-NIR range), and

c) that the correspondence between the MarSAM and Martian

surface spectra improved as the iron contents of the MarSAM

were made increasingly similar to that found in the martian soil.

Measured water adsorption isotherms ,(at 22°(_) of the MarS,_1_and

f.ound them to:

a) be generally char'&cteristic of multilayer adsorption processes,

b) - show cation-dependent hysteresis, i.e., to be dependent on

surface coverage of both water and exchangeable cations,

-13-



c) show three regions corresponding of <1 adsorbed monolayer

of water (at 20% R.H.), 1-2 monolayers (20-70% R.H.), and >2

monolayers (>70% R.H.)

d) exhibit maximum sensitivity to the cation type in the range of

20-70% relative humidity, as would be expected for sequential

hydration.and

We predict that for the anticipated humidity of Mars the dependence

of the isotherms on cation type would be minimal, as the water is strongly

bonded to the silicate layer as well as to the cations.

. Measured the rate of decomposition of sodium formate, as evidenced by

the release of labeled CO2, by the clays, as function of iron content and

relative humidity in simulations of the Viking LR experiment and found

that:

a) the rate of decomposition increased with increasing iron content

and with decreasing water content,

b) the decomposition reaction kinetics was similar to that found with

the martian soil as observed by the Viking Landers, and,

c) no decomposition reaction was caused by palagonites, which thus

do not fully comply with the known constraints for Mars-soil

composition and reactivity.

5. Measured the reflectance spectra (.3 -2.5 #m) of two likely, Mars,

analog minerals, palagonite and iron-rich montmorillonite clay, and showed

that :

a) up to 30 wt % of iron-rlch montmorillonite clay (containing

15.8 _+ 0.4 wt % Fe as Fe203) may be present with palagonite on the surface

of Mars and the remotely sensed reflectance spectrum of Mars may not

reveal this.
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